Improving the Reliability of Mobile Software Systems through Continuous Analysis and Proactive Reconfiguration

Sam Malek, David Kilgore Ibrahim Elhag

Roshanak Roshandel

ICSE NIER – Vancouver, BC, Canada, May 2009

Motivation

- Proliferation of mobile and pervasive software systems
- Increasingly deployed in safety or mission critical settings
- Existing reliability analysis approaches are not suitable
 - Dynamic configuration
 - Fluctuating execution context
 - Changing operational profile

Challenges

- 1. Impact of Context on Reliability
 - Internal vs. external faults
- 2. Impact of Dynamism on Reliability
 - Impact of adaptation on reliability
- 3. Difficulty of Predicting Reliability
 - Is system's past reliability indicative of its future reliability?
- 4. Granularity
 - Component-level as well as the system-level
- 5. Scalability
 - Efficient yet fine grained analysis

The Process

Reliability-Driven Reconfiguration Framework

Proactive Reconfiguration

- Infeasible to determine an optimally reliable architectural configuration for a mobile software system at design time
- Runtime reconfiguration may be necessary to achieve reliability requirements
 - E.g., Allocation of software components to OS processes

Allocation of Components to Processes

More Efficient Less Reliable Less Efficient More Reliable

Refinement of Reliability Analysis

- Initial reliability *prediction* based on available sources of information at design time
- Runtime monitoring performed by the middleware is used to <u>refine</u> the initial prediction
 - internal software properties (e.g., frequency of failures, exceptions, and service requests),
 - external properties (e.g., network fluctuations, battery charge),
 - changes in the structure of the software (e.g., disconnection of components due to network drop outs, off-loading of components due to drained battery)
- Complementary sources of information

Reliability Analysis

- Calculate Component reliability
 - Build HMM based reliability model using
 - Component's behavioral model
 - Training data from the running system
- Derive System reliability
 - Build HMM based reliability model using
 - System's structural model
 - Component level reliability

Calculating Component reliability

- Build HMM based reliability model
- set of states $S = \{S_1, S_2, \dots, S_N\}$, a transition probability matrix $A = \{a_{ij}\}$
- set of observations O = {O₁, O₂, ... O_M}, an observation probability matrix E = {e_{ik}}

Calculating System Reliability

- Build Discrete Markov Chain based reliability model
- S is successful output state, F is failure state. D₁ = [1], D₂ = [1]
- The inner matrix M is a k * k matrix with only transient states, in which s₁ is the entry state and s_k is the exit state (where k is the number of states)
- R_k is the probability of successful execution of state k

Proactive Reconfiguration

BrakeSensor

Prism-MW: Architectural Middleware for Mobile Systems

XTEAM: Modeling and Analysis Tool

Conclusion and Future Work

- **Problem:** architecture-based reliability analysis for mobile and adaptive software systems
- **Approach:** assess and improve the reliability of mobile and dynamic software systems through dynamic reconfiguration
 - Initial framework development, and preliminary evaluation [completed]
 - Incorporation of contextual information into reliability analysis, and evaluation of mobile software systems [TBD]